A statistical approach for estimating uncertainty in dispersion modeling: An example of application in southwestern USA
نویسندگان
چکیده
A method based on a statistical approach of estimating uncertainty in simulating the transport and dispersion of atmospheric pollutants is developed using observations and modeling results from a tracer experiment in the complex terrain of the southwestern USA. The method takes into account the compensating nature of the error components by representing all terms, except dispersion error and variance of stochastic processes. Dispersion error and the variance of the stochastic error are estimated using the maximum likelihood estimation technique applied to the equation for the fractional error. Mesoscale Model 5 (MM5) and a Lagrangian random particle dispersion model with three optional turbulence parameterizations were used as a test bed for method application. Modeled concentrations compared well with the measurements (correlation coefficients on the order of 0.8). The effects of changing two structural components (the turbulence parameterization and the model grid vertical resolution) on the magnitude of the dispersion error also were examined. The expected normalized dispersion error appears to be quite large (up to a factor of three) among model runs with various turbulence schemes. Tests with increased vertical resolution of the atmospheric model (MM5) improved most of the dispersion model statistical performance measures, but to a lesser extent compared to selection of a turbulence parameterization. Method results confirm that structural components of the dispersion model, namely turbulence parameterizations, have the most influence on the expected dispersion error. r 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Application of Decision on Beliefs for Fault Detection in uni-variate Statistical Process Control
In this research, the decision on belief (DOB) approach was employed to analyze and classify the states of uni-variate quality control systems. The concept of DOB and its application in decision making problems were introduced, and then a methodology for modeling a statistical quality control problem by DOB approach was discussed. For this iterative approach, the belief for a system being out-...
متن کاملApplication of Fuzzy Modeling to Earthquake Engineering: Seismic Performance of Cylindrical Tanks
The fuzzy logic concept provides a natural way of dealing with problems in which the source of imprecision is an absence of sharply defined criteria rather than the presence of random variables. The fuzzy approach considers cases where uncertainties play a role in the control mechanism of the concerned phenomena. Fuzzy modeling includes fuzzification, fuzzy analysis and defuzzification. In this...
متن کاملOptimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The prop...
متن کاملApplication of truncated gaussian simulation to ore-waste boundary modeling of Golgohar iron deposit
Truncated Gaussian Simulation (TGS) is a well-known method to generate realizations of the ore domains located in a spatial sequence. In geostatistical framework geological domains are normally utilized for stationary assumption. The ability to measure the uncertainty in the exact locations of the boundaries among different geological units is a common challenge for practitioners. As a simple a...
متن کاملAn Alternative to the Beta-Binomial Distribution with Application in Developmental Toxicology
The beta-binomial distribution is resulted when the probability of success per trial in the binomial distribution varies in successive trials and the mixing distribution is from the beta family. For experiments with binary outcomes, often it may happen that observations exhibit some extra binomial variation and occur in clusters. In such experiments the beta-binomial distribution can generally ...
متن کامل